For Application to Human Spaceflight and ISS Experiments: VESGEN Mapping of Microvascular Network Remodeling during Intestinal Inflammation

Patricia Parsons-Wingerter, Hans-Christian Reinecker

Abstract


Challenges to long-duration space exploration and colonization in microgravity and cosmic radiation environments by humans include poorly understood risks for gastrointestinal function and cancer. Nonetheless, constant remodeling of the intestinal microvasculature is critical for tissue viability, healthy wound healing, and successful prevention or recovery from vascular-mediated inflammatory or ischemic diseases such as cancer. Currently no automated image analysis programs provide quantitative assessments of the complex structure of the mucosal vascular system that are necessary for tracking disease development and tissue recovery. Increasing abnormalities to the microvascular network geometry were therefore mapped with VESsel GENeration Analysis (VESGEN) software from 3D tissue reconstructions of developing intestinal inflammation in a DSS mouse model. By several VESGEN parameters and a novel vascular network linking analysis, inflammation strongly disrupted the regular, lattice-like geometry that defines the normal microvascular network, correlating positively with the increased recruitment of dendritic cells during mucosal defense responses.

References


Bengmark, S. 1996. Econutrition and health maintenance — A new concept to prevent GI inflammation, ulceration and sepsis. Clinical Nutrition. 15:1-10.

Chidlow, J.H., Jr., W. Langston, J.J. Greer, D. Ostanin, M. Abdelbaqi, J. Houghton, A. Senthilkumar, D. Shukla, A.P. Mazar, M.B. Grisham, and C.G. Kevil. 2006. Differential angiogenic regulation of experimental colitis. Am J Pathol. 169:2014-30.

Colgan, S.P., and C.T. Taylor. 2010. Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol. 7:281-7.

Cromer, W.E., J.M. Mathis, D.N. Granger, G.V. Chaitanya, and J.S. Alexander. 2011. Role of the endothelium in inflammatory bowel diseases. World J Gastroenterol. 17:578-93.

Cucinotta, F.A., and M. Durante. 2006. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. 7:431-5.

Fait, E., W. Malkusch, S.-H. Gnoth, C. Dimitropoulou, A. Gaumann, C.J. Kirkpatrick, T. Junginger, and M.A. Konerding. 1998. Vascular patterns of the human large intestine: Morphometric studies of vascular parameters in corrosion casts. Scanning Microscopy. 12:641-651.

Konerding, M.A., E. Fait, and A. Gaumann. 2001. 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer. 84:1354-62.

LaRue, A.C., V.A. Mironov, W.S. Argraves, A. Czirok, P.A. Fleming, and C.J. Drake. 2003. Patterning of embryonic blood vessels. Dev Dyn. 228:21-9.

Lindquist, R.L., G. Shakhar, D. Dudziak, H. Wardemann, T. Eisenreich, M.L. Dustin, and M.C. Nussenzweig. 2004. Visualizing dendritic cell networks in vivo. Nat Immunol. 5:1243-50.

Liu, H., Q. Yang, K. Radhakrishnan, D.E. Whitfield, C.L. Everhart, P. Parsons-Wingerter, and S.A. Fisher. 2009. Role of VEGF and tissue hypoxia in patterning of neural and vascular cells recruited to the embryonic heart. Dev Dyn. 238:2760-9.

Loftus, E.V., Jr. 2004. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology. 126:1504-17.

Maconi, G., G.M. Sampietro, A. Russo, S. Bollani, M. Cristaldi, F. Parente, F. Dottorini, and G. Bianchi Porro. 2002. The vascularity of internal fistulae in Crohn's disease: an in vivo power Doppler ultrasonography assessment. Gut. 50:496-500.

McKay, T.L., D.J. Gedeon, M.B. Vickerman, A.G. Hylton, D. Ribita, H.H. Olar, P.K. Kaiser, and P. Parsons-Wingerter. 2008. Selective inhibition of angiogenesis in small blood vessels and decrease in vessel diameter throughout the vascular tree by triamcinolone acetonide. Invest Ophthalmol Vis Sci. 49:1184-90.

Mizoguchi, A. 2012. Animal models of inflammatory bowel disease. Prog Mol Biol Transl Sci. 105:263-320.

Niess, J.H., S. Brand, X. Gu, L. Landsman, S. Jung, B.A. McCormick, J.M. Vyas, M. Boes, H.L. Ploegh, J.G. Fox, D.R. Littman, and H.C. Reinecker. 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 307:254-8.

Niess, J.H., and H.C. Reinecker. 2006. Dendritic cells: the commanders-in-chief of mucosal immune defenses. Curr Opin Gastroenterol. 22:354-60.

Parsons-Wingerter, P., U.M. Chandrasekharan, T.L. McKay, K. Radhakrishnan, P.E. DiCorleto, B. Albarran, and A.G. Farr. 2006a. A VEGF165-induced phenotypic switch from increased vessel density to increased vessel diameter and increased endothelial NOS activity. Microvasc Res. 72:91-100.

Parsons-Wingerter, P., K.E. Elliott, J.I. Clark, and A.G. Farr. 2000b. Fibroblast growth factor-2 selectively stimulates angiogenesis of small vessels in arterial tree. Arterioscler Thromb Vasc Biol. 20:1250-6.

Parsons-Wingerter, P., K.E. Elliott, A.G. Farr, K. Radhakrishnan, J.I. Clark, and E.H. Sage. 2000a. Generational analysis reveals that TGF-beta1 inhibits the rate of angiogenesis in vivo by selective decrease in the number of new vessels. Microvasc Res. 59:221-32.

Parsons-Wingerter, P., B. Lwai, M.C. Yang, K.E. Elliott, A. Milaninia, A. Redlitz, J.I. Clark, and E.H. Sage. 1998. A novel assay of angiogenesis in the quail chorioallantoic membrane: stimulation by bFGF and inhibition by angiostatin according to fractal dimension and grid intersection. Microvasc. Res. 55:201-14.

Parsons-Wingerter, P., T.L. McKay, D. Leontiev, M.B. Vickerman, T.K. Condrich, and P.E. Dicorleto. 2006b. Lymphangiogenesis by blind-ended vessel sprouting is concurrent with hemangiogenesis by vascular splitting. Anat Rec A. 288:233-47.

Parsons-Wingerter, P., K. Radhakrishnan, M. Vickerman, and P. Kaiser. 2010. Oscillation of angiogenesis with vascular dropout in diabetic retinopathy by VESsel GENeration Analysis (VESGEN). Invest Ophthalmol Vis Sci. 51:498-507.

Parsons-Wingerter, P., and M.B. Vickerman. 2011. Informative mapping by VESGEN analysis of venation branching pattern in plant leaves such as Arabidopsis thaliana. Grav Space Biol Bull. 25:69-71.

Podolsky, D.K. 2002. Inflammatory bowel disease. N Engl J Med. 347:417-29.

Spalinger, J., H. Patriquin, M.C. Miron, G. Marx, D. Herzog, J. Dubois, M. Dubinsky, and E.G. Seidman. 2000. Doppler US in patients with crohn disease: vessel density in the diseased bowel reflects disease activity. Radiology. 217:787-91.

Turner, N.D., L.A. Braby, J. Ford, and J.R. Lupton. 2002. Opportunities for nutritional amelioration of radiation-induced cellular damage. Nutrition. 18:904-12.

Vickerman, M.B., P.A. Keith, T.L. McKay, D.J. Gedeon, M. Watanabe, M. Montano, G. Karunamuni, P.K. Kaiser, J.E. Sears, Q. Ebrahem, D. Ribita, A.G. Hylton, and P. Parsons-Wingerter. 2009. VESGEN 2D: automated, user-interactive software for quantification and mapping of angiogenic and lymphangiogenic trees and networks. Anat Rec A. 292:320-32.


Full Text: PG.2-12 -- PDF