Worms in Space for Outreach on Earth: Space Life Science Activities for the Classroom

Christopher James Gaffney, Amelia Pollard, Colleen Deane, Michael Cooke, Michele Balsamo, Jennifer Hewitt, Siva Vanapalli, Nathaniel Szewczyk, Timothy Etheridge, Bethan Phillips


Long term spaceflight is associated with the loss of skeletal muscle mass and function. The Molecular Muscle Experiment (MME) seeks to identify the causes of muscle decline in space and test potential therapies to attenuate this in the microscopic worm, C. elegans. This is the first UK-led experiment in the almost two-decade history of the International Space Station. We therefore intend to complete significant and widespread educational outreach activities to promote interest in science, technology, engineering and maths (STEM), and to increase engagement with our space life science experiment. This paper describes three education outreach activities relating to our MME experiment that are suitable for use in the classroom, including: (i) observing normal and mutant worms; (ii) observing the effect of unloading (simulation of microgravity); and (iii) handling spaceflight hardware. Activity packs are provided at a ‘starter’ and ‘advanced’ level to support these activities. This paper also provides three posters that may be used as learning resources for educators that give information on: (i) why worms are used for research; (ii) spaceflight human physiology; and (iii) the specifics of our MME. Details of further planned engagement activities are outlined to increase the awareness of the MME.


Buckey, J. C. (1999) ‘Preparing for Mars: the physiologic and medical challenges.’, European journal of medical research, 4(9), pp. 353–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10477498 (Accessed: 21 February 2016).

Department of Education (2018) STEM Strategy, Department of Education. Available at: https://www.education-ni.gov.uk/articles/stem-strategy.

ESA (2017) Astronauts: Human Spaceflight and Exploration: Timothy Peake, ESA. Available at: http://www.esa.int/Our_Activities/Human_Spaceflight/Astronauts/Timothy_Peake.

Etheridge, T., Rahman, M., Gaffney, C. J., Shaw, D., Shephard, F., Magudia, J., Solomon, D. E., Milne, T., Blawzdziewicz, J., Constantin-Teodosiu, D., Greenhaff, P. L., Vanapalli, S. A. and Szewczyk, N. J. (2015) ‘The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans.’, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 29(4), pp. 1235–46. doi: 10.1096/fj.14-259119.

Fitts, R. H., Trappe, S. W., Costill, D. L., Gallagher, P. M., Creer, A. C., Colloton, P. A., Peters, J. R., Romatowski, J. G., Bain, J. L. and Riley, D. A. (2010) ‘Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres.’, The Journal of physiology, 588(Pt 18), pp. 3567–92. doi: 10.1113/jphysiol.2010.188508.

Gaffney, C. J., Bass, J. J., Barratt, T. F. and Szewczyk, N. J. (2014) ‘Methods to assess subcellular compartments of muscle in C. elegans.’, Journal of visualized experiments : JoVE, (93), p. e52043. doi: 10.3791/52043.

Gaffney, C. J., Shephard, F., Chu, J., Baillie, D. L., Rose, A., Constantin-Teodosiu, D., Greenhaff, P. L. and Szewczyk, N. J. (2015) ‘Degenerin channel activation causes caspase-mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle’, Journal of Cachexia, Sarcopenia and Muscle, p. n/a-n/a. doi: 10.1002/jcsm.12040.

Gaud, A., Simon, J.-M., Witzel, T., Carre-Pierrat, M., Wermuth, C. G. and Ségalat, L. (2004) ‘Prednisone reduces muscle degeneration in dystrophin-deficient Caenorhabditis elegans’, Neuromuscular Disorders, 14(6), pp. 365–370. doi: 10.1016/j.nmd.2004.02.011.

Higashibata, A., Hashizume, T., Nemoto, K., Higashitani, N., Etheridge, T., Mori, C., Harada, S., Sugimoto, T., Szewczyk, N. J., Baba, S. A., Mogami, Y., Fukui, K. and Higashitani, A. (2016) ‘Microgravity elicits reproducible alterations in cytoskeletal and metabolic gene and protein expression in space-flown Caenorhabditis elegans’, NPJ Microgravity, 2, p. 15022.

Higashibata, A., Szewczyk, N., Conley, C., Imamizo-Sato, M., Higashitani, A. and Ishioka, N. (2006) ‘Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight.’, The Journal of Experimental Biology, 209, p. 3209–18. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16888068.

Higashitani, A., Hashizume, T., Sugimoto, T., Mori, C., Nemoto, K., Etheridge, T., Higashitani, N., Takanami, T., Suzuki, H., Fukui, K., Yamazaki, T., Ishioka, N., Szewczyk, N. and Higashibata, A. (2009) ‘C. elegans RNAi space experiment (CERISE) in Japanese Experiment Module KIBO.’, Uchu Seibutsu Kagaku. NIH Public Access, 23(4), pp. 183–187. doi: 10.2187/bss.23.183.

Kaletta, T. and Hengartner, M. O. (2006) ‘Finding function in novel targets: C. elegans as a model organism’, Nature Reviews Drug Discovery, 5, pp. 387–399.

Nelson, G. A., Schubert, W. W., Kazarians, G. A. and Richards, G. F. (1994) ‘Development and chromosome mechanics in nematodes: results from IML-1.’, Advances in space research : the official journal of the Committee on Space Research (COSPAR), 14(8), pp. 209–14. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11537919 (Accessed: 26 March 2018).

Oczypok, E. A., Etheridge, T., Freeman, J., Stodieck, L., Johnsen, R., Baillie, D. and Szewczyk, N. J. (2012) ‘Remote automated multi-generational growth and observation of an animal in low Earth orbit.’, Journal of the Royal Society, Interface. The Royal Society, 9(68), pp. 596–9. doi: 10.1098/rsif.2011.0716.

Park, E. C. and Horvitz, H. R. (1986) ‘C. elegans unc-105 mutations affect muscle and are suppressed by other mutations that affect muscle.’, Genetics, 113(4), pp. 853–67. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3744029 (Accessed: 26 March 2018).

Rand, J. B. and Russell, R. L. (1984) ‘Choline acetyltransferase-deficient mutants of the nematode Caenorhabditis elegans.’, Genetics, 106(2), pp. 227–48. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6698395 (Accessed: 28 March 2018).

Szewczyk, N. J., Tillman, J., Conley, C. A., Granger, L., Segalat, L., Higashitani, A., Honda, S., Honda, Y., Kagawa, H., Adachi, R., Higashibata, A., Fujimoto, N., Kuriyama, K., Ishioka, N., Fukui, K., Baillie, D., Rose, A., Gasset, G., Eche, B., Chaput, D. and Viso, M. (2008) ‘Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST)’, Advances in Space Research, 42(6), pp. 1072–1079. doi: 10.1016/j.asr.2008.03.017.

Trappe, S., Costill, D., Gallagher, P., Creer, A., Peters, J. R., Evans, H., Riley, D. A. and Fitts, R. H. (2009) ‘Exercise in space: human skeletal muscle after 6 months aboard the International Space Station.’, Journal of applied physiology (Bethesda, Md. : 1985). American Physiological Society, 106(4), pp. 1159–68. doi: 10.1152/japplphysiol.91578.2008.

U.S. Department of Education (2016) Science, Technology, Engineering and Math: Education for Global Leadership, US Department of Education. Available at: https://www.ed.gov/stem.

Wang, C., Sang, C., Higashibata, A., Ishioka, N., Rong, L., Yang, C., Sun, Y., Yi, Z.-C. and Zhuang, F.-Y. (2008) ‘Changes of Muscle-related Genes and Proteins After Spaceflight in Caenorhabditis elegans’, Progress in Biochemistry and Biophysics, 35(10), pp. 1195–1201. Available at: http://www.pibb.ac.cn/pibben/ch/reader/create_pdf.aspx?file_no=20080192&flag=1&journal_id=pibben (Accessed: 26 March 2018).

Warren, P., Golden, A., Hanover, J., Love, D., Shephard, F. and Szewczyk, N. J. (2013) ‘Evaluation of the Fluids Mixing Enclosure System for Life Science Experiments During a CommercialCaenorhabditis elegansSpaceflight Experiment.’, Advances in space research : the official journal of the Committee on Space Research (COSPAR). NIH Public Access, 51(12), pp. 2241–2250. doi: 10.1016/j.asr.2013.02.002.

WormClassroom (2018) Teaching with C. elegans, WormClassroom. Available at: http://wormclassroom.org/research-uses.

Full Text: PG. 74-82 -- PDF