Einstein-Elevator: A New Facility for Research from µg to 5 g

Christoph Lotz, Tobias Froböse, Alexander Wanner, Ludger Overmeyer, Wolfgang Ertmer

Abstract


Increasing efforts to move into space have driven the need for new facilities that are capable of simulating weightlessness and other space gravity conditions on Earth. Simulation of weightlessness/microgravity (approximately 10 6 g) is conducted in different earthbound and flight-based facilities, often with poor availability. Other conditions such as lunar or Martian gravity with their partial Earth gravity/hypogravity cannot be performed at a large scale for scientific research on Earth. For multiple Earth gravity/hypergravity, simulation centrifuges are available, but they do not allow the possibility of abrupt acceleration changes. To support this wide range of conditions, a new technique is being developed to combine all of these requirements into a single drop tower facility. Currently under construction, the Einstein-Elevator of the Hannover Institute of Technology at the Leibniz Universität Hannover is an earthbound tool created for simulating micro-, hypo-, and hypergravity research with a high repetition rate. The facility will be capable of performing 100 experiments per day (8-h work shift), each creating 4 s of microgravity. For the first time, statistics can be applied in experiments under space gravity conditions at favorable costs and short mission times. The Einstein-Elevator offers room for large experiments with a diameter up to 1.7 m and a height up to 2 m as well as weights up to 1,000 kg. To perform larger experiments under different gravitational conditions, it was necessary to develop an innovative drive and guide concept. The Einstein-Elevator will be available for general research under different gravity conditions from 2018 onward.

References


Ahlers H, Müntinga H, Wenzlawski A, Krutzik M, Tackmann G, Abend S, Gaaloul N, Giese E, Roura A, Kuhl R, Lämmerzahl C, Peters A, Windpassinger P, Sengstock K, Schleich WP, Ertmer W, Rasel EM (2016) Double Bragg interferometry. Physical Review Letters 116: 173601

Breuer R (2010) Schwerelos: Europa Forscht im Weltraum, München, Germany: Spektrum Custom Publishing

DDT (2017) Dryden Drop Tower. Oregon, USA: Portland State University https://www.pdx. edu/dryden-drop-tower

Del Rosso D (2013) Experiment Design Requirements and Guidelines for Microgravity Research. Houston, TX: National Aeronautics and Space Administration

Dittus H (2002) Caging für STEP. Final Report, FKZ 50OY0102. Bremen, Hannover, Germany: ZARM

Dittus H (1991) Drop tower ‘Bremen’: a weightlessness laboratory on Earth. Endeavour 15 (2): 72-78

Dittus H (2001) Untersuchungen zur Entwicklung des Caging-Mechanismus für die Mission MiniSTEP und Durchführung von begleitenden Fallturm-Tests. Final Report, FKZ 50OY98010. Bremen, Hannover, Germany: ZARM

Dittus H, Schomisch AM (1990) Vacuum systems for microgravity experiments. Vacuum 41: 2135-2137

Fujita O (2009) 50M microgravity experiment facility: overview of “Cosmo Torre.” http://mechhm.eng.hokudai.ac.jp/~lsu/hastic/experimental_procedure.pdf

Hadden J (2015) Falcon 9 Launch Vehicle: Payload User's Guide. Hawthorne, CA: SpaceX

Huang Y, Mao W (2013) First results derived from a drop-tower testing system for granular flow in a microgravity environment. Landslides 10: 493-501

Intrasys GmbH (2006) High Speed LSM Drive System: Intrasys Linear Synchron Motor Drive System for Amusement Rides. http://www.intrasys-gmbh.com/at/LSM_0205. pdf

Iwakami T, Nokura M (2005) Micro-gravity experiments at micro-gravity laboratory of Japan (MGLAB). In 56th International Astronautical Congress, Vol. 1, pp 1-7

Koide A (2001) JAMIC drop-shaft type microgravity facility accommodating 10-seconds microgravity. Journal of the Japan Society of Microgravity Application 18: 136-139

Kommunarovich KY (2016) Academician V.P. Makeyev State Rocket Centre. Test centre: OAO Makeyev GRTs. http://www. makeyev .ru/labisp/

Könemann T (2009) Konzeption, Entwicklung und Umsetzung von atomoptischen Fallturmexperimenten für den Einsatz unter Schwerelosigkeit am Fallturm Bremen. Dissertation. Bremen, Germany: Universität Bremen

Könemann T, Kaczmarczik U, Gierse A, Greif A, Lutz T, Mawn S, Siemer J,

Eigenbrod C, Kampen P von, Lämmerzahl C (2015) Concept for a next-generation drop tower system. Advances in Space Research 55: 1728-1733

Kulas S, Vogt C, Resch A, Hartwig J, Ganske S, Matthias J, Schlippert D, Wendrich T, Ertmer W, Rasel EM, Damjanic M, Weßels P, Kohfeldt A, Luvsandamdin E, Schiemangk M, Grzeschik C, Krutzik M, Wicht A, Peters A, Herrmann S, Lämmerzahl C (2017) Miniaturized lab system for future cold atom experiments in microgravity. Microgravity Science and Technology 29: 37-48

Lagier R (2016) Ariane 5: User's Manual. Issue 5, Revision 2, Arianespace

Lämmerzahl C, Steinberg T (2015) Droptowers. In Generation and Applications of Extra-Terrestrial Environments on Earth, DA Beysens and JJWA van Loon (eds), pp 45-73. Aalborg, Denmark: River Publishers

Lotz C, Kämper T, Berlin H, Overmeyer L (2014) Innovative drive and guide concept for experiments under microgravity in the Einstein-Elevator. In Symposium on Automated Systems and Technologies, L. Overmeyer and V.P. Shkodyrev (eds), Berichte aus dem ITA, Vol. 4, pp 87-98. Garbsen, Germany: PZH-Verl. TEWISS - Technik und Wissen

Lotz C, Overmeyer L (2013) Mechanische Ersatzmodelle zum Nachweis der Realisierbarkeit minimaler Restbeschleuni-gungen während der Freifallphase im Einstein-Elevator: Mechanical simulation model for verifying the feasibility of the minimal residual acceleration during the free-fall phase in the Einstein-Elevator. Logistics Journal 13: 1-9

Lotz C, Rein M, Overmeyer L (2015) Steps for a reduction of vibrations of the roller guide in the Einstein-Elevator. In Proceedings of the Symposium Automated Systems and Technologies, VP Shkodyrev and L Overmeyer (eds), pp 87-98. St. Petersburg, Russia: Politechnika-service

Mori T, Goto K, Ohashi R, Sawaoka AB (1993) Capabilities and recent activities of Japan Microgravity Center (JAMIC). Microgravity Science and Technology 5: 238-242

Neumann E (2006) Zero Gravity Research Facility at NASA Glenn Research Center. https://www1.grc.nasa.gov/facilities/zero-g/

Neumann E (2008) 2.2 second drop tower at NASA Glenn Research Center. https://www1.grc.nasa.gov/facilities/drop/

Neumann E (2017) Zero Gravity Research Facility User's Guide. https://www1.grc. nasa.gov/wp-content/uploads/Zero-Gravity-Research-Facility-users-guide.pdf

Nokura M (2008) Improvement plan of the electrical equipment in MGLAB. In Proceedings of Third International Symposium on Physical Science in Space, Vol 25, pp 629-634

Perez E (2012) Soyuz: User's Manual. Issue 2, Revision 0, Arianespace

Pletser V, Kumei Y (2015) Parabolic flights. In Generation and Applications of Extra-Terrestrial Environments on Earth, DA Beysens and JJWA van Loon (eds), pp 61-73. Aalborg, Denmark: River Publishers

Preu P, Joop O, Ruyters G, Kuhl R, Braun M, Froke R (2014) TEXUS: Mit Forschungsraketen in die Schwerelosigkeit. http://www.dlr.de/rd/Portaldata/28/Resources/dokumente/publikationen/Broschuere_TEXUS_hires.pdf

Selig H, Dittus H, Lämmerzahl C (2010) Drop tower microgravity improvement towards the nano-g level for the MICROSCOPE payload tests. Microgravity Science and Technology 22: 539-549

Selig H, Liorzou F (2013) Free fall test overview: MICROSCOPE Colloquium II. http://gram. oca.eu/Ressources_doc/2-Microscope-Colloquium-2013/23.H.Selig.F.Liorzou.Free. fall.test.pdf

Selig H, List M (2011) Free fall payload test environment and mission simulation. http://gram.oca.eu/Ressources_doc/EP_Colloquium_2011/9%20H%20Selig.pdf

Steinberg T (2016) Microgravity Drop Tower: Science and Engineering Faculty. https://www.qut.edu.au/research-all/research-projects/microgravity-drop-tower

Steinberg T (2007) Reduced gravity testing and research capabilities at Queensland University of Technology's new 2.0 second drop tower. In 16th Australasian Fluid Mechanics Conference, Vol 1, pp 650-653

Urban DL (2015) Drop tower and aircraft capabilities. In 31st American Society for Gravitational and Space Research Annual Meeting, Alexandria, VA

van Loon JJWA (2015) Centrifuges. In Generation and Applications of Extra-Terrestrial Environments on Earth, DA Beysens and JJWA van Loon (eds), pp 109-113. Aalborg, Denmark: River Publishers

von Kampen P, Kaczmarczik U, Rath HJ (2006) The new drop tower catapult system. Acta Astronautica 59: 278-283

Wan SH, Yin MG, Guan XD, Lin H, Xie JC, Hu WR (2010) Drop Tower Beijing and Short-Time Microgravity Experiments. In 38th Annual COSPAR Scientific Assembly, https://www.cospar-assembly.org/abstractcd/OLD/COSPAR-10/abstracts/data/pdf/abstracts/G02-0006-10.pdf

ZARM FABmbH (2011) User Manual: Drop Tower Bremen. https://www.zarm.uni-bremen.de/fileadmin/user_upload/drop_tower/Users_Manual_0412.pdf

Zhang X, Yuan L, Wu W (2005) Some key technics of drop tower experiment device of National Microgravity Laboratory (China). Science in China Press 48: 305-316


Full Text: PG. 11-27 -- PDF