Establishing Standard Protocols for Bacterial Culture in Biological Research in Canisters (BRIC) Hardware

Patricia Fajardo-Cavazos, Wayne L. Nicholson

Abstract


The NASA GeneLab Data System (GLDS) was recently developed to facilitate cross-experiment comparisons in order to understand the response of microorganisms to the human spaceflight environment. However, prior spaceflight experiments were conducted using a wide variety different hardware, media, culture conditions, and procedures. Such confounding factors could potentially mask true differences in gene expression between spaceflight and ground control samples. In an attempt to mitigate such confounding factors, we describe here the development of a standardized set of hardware, media, and protocols for liquid cultivation of microbes in space, using the model bacteria Bacillus subtilis strain 168 and Staphylococcus aureus strain UAMS-1 and Biological Research in Canister (BRIC) spaceflight hardware.

References


Baert P, Van Cleynenbreugel T, Vandesompele J, De Schynkel S, Vander Sloten J, Van Oostveldt P (2006) The potential (radio-)biological impact of launch vibration. Acta Astronaut 58: 456-463

Crabbé A, Schurr MJ, Monsieurs P, Morici L, Schurr J, Wilson JW, Ott CM, Tsaprailis G, Pierson DL, Stefanyshyn-Piper H, Nickerson CA (2011) Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl Environ Microbiol 77: 1221-1230

Drew SW (1985) Liquid culture. In Manual of Methods for General Bacteriology, Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds), pp 151-178. Washington, DC: American Society for Microbiology

Fajardo-Cavazos P, Nicholson WL (2016) Cultivation of Staphylococcus epidermidis in the Human Spaceflight Environment Leads to Alterations in the Frequency and Spectrum of Spontaneous Rifampicin-Resistance Mutations in the rpoB Gene. Front Microbiol 7: 999

Gillaspy AF, Hickmon SG, Skinner RA, Thomas JR, Nelson CL, Smeltzer MS (1995) Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun 63: 3373-3380

Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74: 121-156

Huang B, Liu N, Rong X, Ruan J, Huang Y (2015) Effects of simulated microgravity and spaceflight on morphological differentiation and secondary metabolism of Streptomyces coelicolor A3(2). Applied Microbiology and Biotechnology 99: 4409-4422

Mastroleo F, Van Houdt R, Leroy B, Benotmane MA, Janssen A, Mergeay M, Vanhavere F, Hendrickx L, Wattiez R, Leys N (2009) Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. Isme Journal 3: 1402-1419

Narvaez-Reinaldo JJ, Barba I, Gonzalez-Lopez J, Tunnacliffe A, Manzanera M (2010) Rapid method for isolation of desiccation-tolerant strains and xeroprotectants. Appl Environ Microbiol 76: 5254-5262

Nicholson WL (2004) Ubiquity, longevity, and ecological roles of Bacillus spores. In Bacterial Spore Formers: Probiotics and Emerging Applications, Ricca E, Henriques AO, Cutting SM (eds), pp 1-15. Norfolk, UK.: Horizon Scientific Press

Nicholson WL, Fajardo-Cavazos P, Morrison MD (2015). BRIC-21: Global responses of microbes exposed to the human spaceflight environment. Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Alexandria, VA USA.

Nicholson WL, Setlow P (1990) Sporulation, germination, and outgrowth. In Molecular biological methods for Bacillus, Harwood CR, Cutting SM (eds), pp 391-450. New York: J. Wiley & Sons

Nocker A, Fernandez PS, Montijn R, Schuren F (2012) Effect of air drying on bacterial viability: a multiparameter viability assessment. J Microbiol Methods 90: 86-95

Paul AL, Zupanska AK, Ostrow DT, Zhang Y, Sun Y, Li JL, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ (2012) Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology 12: 40-56

Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58: 755-805.

Potts M, Slaughter SM, Hunneke FU, Garst JF, Helm RF (2005) Desiccation tolerance of prokaryotes: application of principles to human cells. Integr Comp Biol 45: 800-809

Rosenzweig JA, Abogunde O, Thomas K, Lawal A, Nguyen YU, Sodipe A, Jejelowo O (2010) Spaceflight and modeled microgravity effects on microbial growth and virulence. Appl Microbiol Biotechnol 85: 885-891

Rosenzweig JA, Ahmed S, Eunson J, Chopra AK (2014) Low-shear force associated with modeled microgravity and spaceflight does not similarly impact the virulence of notable bacterial pathogens. Appl Microbiol Biotechnol doi: 10.1007/s00253-014-6025-8

Ryan KJ (1994) Staphylococci. In Sherris Medical Microbiology: An Introduction to Infectious Diseases, Ryan KJ (ed), 3rd edn. Norwalk, CT: Appleton & Lange

Strasser S, Neureiter M, Geppl M, Braun R, Danner H (2009) Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J Appl Microbiol 107: 167-177

Tjandrawinata RR, Vincent VL, HughesFulford M (1997) Vibrational force alters mRNA expression in osteoblasts. FASEB J 11: 493-497

Wehland M, Warnke E, Frett T, Hemmersbach R, Hauslage J, Ma X, Aleshcheva G, Pietsch J, Bauer J, Grimm D (2016) The impact of hypergravity and vibration on gene and protein expression of thyroid cells. Micrograv Sci Technol 28: 261-274

Wells B, McCray RH, Best MD, Levine HG (2001). A flight-rated Petri dish apparatus providing two stage fluid injection for aseptic biological investigations in space. 31st International Conference on Environmental Systems; SAE International.

Wilson JW, Ott CM, Bentrup KHZ, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Neiman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proceedings of the National Academy of Sciences of the United States of America 104: 16299-16304

Wilson JW, Ott CM, Quick L, Davis R, Bentrup KHZ, Crabbe A, Richter E, Sarker S, Barrila J, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Shah M, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, CdeBaca A, Narayan S, Benjamin J, Goulart C, Rupert M, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Porter MD, Pierson DL, Smith SM, Mergeay M, Leys N, Stefanyshyn-Piper HM, Gorie D, Nickerson CA (2008) Media Ion Composition Controls Regulatory and Virulence Response of Salmonella in Spaceflight. Plos One 3: 10


Full Text: PG 58-69 -- PDF