High-Altitude Ballooning Student Research With Yeast and Plant Seeds

Bernhard Beck-Winchatz, Judith Bramble


Weather balloon flights provide affordable access to a space-like environment for student research. Typical flights last for 2.0-2.5 hours and reach altitudes of approximately 30 km. Payloads are exposed to intense cosmic and ultraviolet radiation, temperatures below -60° C and atmospheric pressures of approximately 0.01 atmospheres. We report on simple laboratory procedures intended primarily for high school and middle school students in studying the effects of high-altitude balloon flights on yeast and plant seeds. Saccharomyces cerevisiae, Raphanus sativus and Brassica rapa were flown on two weather balloons inside and outside of payload containers to an altitude of approximately 27.5 km. After the flights the yeast cells were plated on YED media and incubated to assess survival and mutation rates. The seeds were planted to assess survival and variation in quantitative traits. We also discuss connections to disciplinary core ideas in the Next Generation Science Standards and provide an overview of further laboratory investigations designed to enhance students’ understanding of the effects of radiation on living organisms.


Achieve Inc. 2013. Next generation science standards. Washington, DC: National Academies Press.

Alston, J. A. 1991. Seeds in space experiment. In: Levine, A. S. (ed.), LDEF: 69 months in space: first-post-retrieval symposium. Washington, D.C.: NASA. pp. 1625–1629.

Carlson, P. 2012. A century of cosmic rays. Physics Today 65(2): 30-36.

Chen, F., Jiang, X., Lu, S., Yi, X., Yang, C., Li, J. 1994. Effect on rice genetical character by high space condition. Chinese Journal of Rice Science 8(1): 1-8. (Chinese language).

Clément, G. and Slenzka, K. 2006. Animals and plants in space. In: Fundamentals of Space Biology. Clément, G. and Slenzka, K. (eds) New York, NY: Springer. pp. 51-80.

Dickson, K. 1991. Summary of Biological Spaceflight Experiments with Cells. ASGSB Bulletin 4(2): 151-260.

Edge of Space Sciences 1993. The EOSS Handbook. Retrieved from http://www.eoss.org/handbook/handbook.htm.

Ferl, R., Wheeler, R., Levine, H. G., Paul, A.-L. 2002. Plants in Space. Current Opinion in Plant Biology 5(3): 258-263.

Frederiksen 2010. Irradiated Seeds. Ølgod, Denmark: Frederiksen. Retrieved from http://www.frederiksen.eu/uploads/tx_tcshop/media/779120_AE.pdf

Grigsby, D. K., and Ehrlich, N. J. 1991. Space exposed experiment developed for students (SEEDS). In: LDEF: 69 Months in Space. First-post-retrieval Symposium. Levine, A. S. (ed.). pp. 1635-1636.

Horneck G., Klaus D. M., and Mancinelli R. L. 2010. Space Microbiology. Microbiology and Molecular Biology Reviews 74(1): 121-156.

Larson, S. L., Armstrong, J. C., and Hiscock, W. A. 2009. The first frontier: High altitude ballooning as a platform for student research experiences in science and engineering. American Journal of Physics 77: 489-497.

Li J., Wang P., Han D., Chen F., Deng L., Guo Y. 1997. Mutation effect of high altitude balloon flight on rice and green pepper seeds. Space Medicine and Medical Engineering 10(2):79-83.

Liu, L. X., Guo, H. J., Zhao, L. S., Wang, J. Gu, J. Y., and Zhao, S. R. 2009. Achievements and perspectives of crop space breeding in China. In: Induced plant mutations in the genomics era. Shu Q. Y. (ed.). Rome, Italy: Food and Agriculture Organization of the United Nations.

Manney, T., Davis, L., Johnson, B., Manney, M., Montelone, B., Weaver, L., and Williamson, B. 1997. A Classroom Guide to Yeast Experiments. Burlington, N.C.: Carolina Biologicals.

McCoy, K. B., Derecho, I., Wong, T., Tran, H. M., Huynh, T. D., La Duc, M. T., Venkateswaran, K., Mogul, R. 2012. Insights into the extremotolerance of Acinetobacter radioresistens 50v1, a gram-negative bacterium isolated from the Mars Odyssey spacecraft. Astrobiology 12(9): 854-862.

Melton, B. 1991. SEEDS: A Celebration of Science. Washington, D.C.: NASA.

Montana Space Grant Consortium, 2004. Ballooning Program Handbook. Retrieved from http://www.mrc.uidaho.edu/~atkinson/ENGR_RISE/Borealis.pdf

NASA 2007. Lunar Plant Growth Chamber Human Exploration Project STS-118 Design Challenge. Huntsville, AL: George C. Marshall Space Flight Center. Retrieved from http://goo.gl/TFIcN8

Olsson-Francis, K. and Cockell, C. S. 2010. Experimental methods for studying microbial survival in extraterrestrial environments. Journal of Microbiological Methods 80: 1-13.

Page, L. W. and Page, T. 1977. Apollo-Soyuz Pamphlet No. 6: Cosmic Ray Dosage. Washington, D.C.: NASA. Retrieved from http://goo.gl/rp2zHQ

Parker, E. N. 2006. Shielding space travelers. Scientific American 294:40-47.

Rask, J., Elland, C. S., and Vercoutere, W. 2006. Radiation biology educator guide. Module 2: Radiation damage in living organisms. Moffett Field, CA: Ames Research Center.

Raulin-Cerceau, F., Maurel, M.-C., and Schneider, J. 1998. From panspermia to bioastronomy: the evolution of the idea of universal life. Origins of life and evolution of the biosphere 26(3-5):597–612.

Schlaepfer, H. 2003. Cosmic Rays. Spatium 11: 3-15. Bern, Switzerland: Association Pro ISSI. Retrieved from http://www.issibern.ch/publications/spatium.html

Sugimoto M., Ishii M., Mori I. C., Elena S., Gusev O. A., Kihara M., Hoki T., Sychev V. N., Levinskikh M. A., Novikova N. D., Grigoriev A. I. 2011. Viability of barley seeds after long-term exposure to outer side of International Space Station. Advances in Space Research 48(6):1155-60.

Sobrero, P. and Valverde, C. 2013. A simple laboratory class using a Pseudomonas aeruginosa auxotroph to illustrate UV-mutagenic killing, DNA photorepair and mutagenic DNA repair. Journal of Biological Education 47(1): 60–66

Stevens, A. 1936. Man’s farthest aloft. National Geographic Magazine 69: 693–712.

Tepfer, D. and Leach, S. 2006, Plant Seeds as Model Vectors for the Transfer of Life Through Space. Astrophysics & Space Science 306:69–75.

Turvey, T. 1986. Nuffield Advanced Science. Biology, Practical Guide 5: Inheritance. Retrieved from http://goo.gl/XemYFG

Valtonen, M., Nurmi, P., Zheng, J.-Q., Cucinotta, F. A., Wilson, J. W., Horneck, G., Lindegren, L., Melosh, J., Rickman, H., Mileikowsky, C. 2009. Natural Transfer of Viable Microbes in Space from Planets in Extra-Solar Systems to a Planet in our Solar System and Vice Versa. The Astrophysical Journal 690(1), 210-215.

Verhage, P. 2005. Near Space Exploration With the BASIC Stamp. Retrieved from http://www.nearsys.com/pubs/book

Vuk, T. R., Dixon, M., and Morrow, R. 2004. Tomatosphere - Mission to Mars - An Educational Outreach Project for Primary and Secondary Schools. SAE Transactions 113: 952-957.

Wheeler, R. M. 2009. Roadmaps and Strategies for Crop Research for Bioregenerative Life Support Systems. NASA Technical Memorandum 2009-214768.

Williamson, B. 1999. Red mutant hunt with Saccharomyces cerevisiae. In: Tested studies for laboratory teaching, Volume 20. S. J. Karcher (ed.). Proceedings of the 20th Workshop/Conference of the Association for Biology Laboratory Education (ABLE). pp 123-135. Retrieved from http://www.ableweb.org/volumes/vol-20/6-williamson.pdf

Yip, C.-W. 2007. Preventing ultraviolet light-induced damage: the benefits of antioxidants. Journal of Biological Education 42(1): 40-43.

Zion, M., Guy, D., Yaron, R. and Slesak, M. 2006. UV radiation damage and bacterial DNA repair systems. Journal of Biological Education 41(1): 30-33.

Full Text: PG. 117-127 -- PDF